STRUCTURE DE LA PANDOLINE : NOUVEAU TYPE D'ALCALOIDE INDOLIQUE

M.-J. HOIZEY, C. SIGAUT, M.-J. JACQUIER, L. LE MEN-OLIVIER, J. LEVY et J. LE MEN Faculté de Pharmacie, ERA au CNRS n° 319, 51 rue Cognacq-Jay 51096 REIMS CEDEX FRANCE

(Received in France 8 March 1974; received in UK for publication 18 March 1974)

Résumé : La structure de la pandoline : (+) hydroxy-205 Ψ -vincadifformine, est confirmée au moyen de deux corrélations chimiques avec la (+) catharanthine.

Abstracts: The structure of pandoline: 20ξ -hydroxy Ψ -vincadifformine, is confirmed by two chemical correlations with (+) catharanthine.

Dans une publication antérieure $\frac{1}{2}$ la structure $\underline{1}$ a été proposée pour la (+) pandoline : alcaloïde isolé du *Pandaca calcarea* et du *Pandaca debrayi*².

Cette hypothèse structurale, déduite de l'analyse spectrale et de quelques réactions portant sur les groupements fonctionnels, est à présent confirmée par deux corrélations chimiques.

Quant au dérivé $\underline{2}_a$, sa structure a pu être fixée par corrélation chimique avec la catharanthine $\underline{8}$. Selon la technique préconisée par J.P. KUTNEY, la 16 S-carbométhoxy cleavamine $\underline{9}$, obtenue $\underline{5}$ à partir de $\underline{8}$, a été oxydée en milieu acétique au moyen d'acétate mercurique $\underline{6}$. Plusieurs chromatographies préparatives sur plaque du produit brut (rendement : 85 %) ont permis d'isoler, à côté de traces de catharanthine $\underline{8}$ et de divers produits secondaire $\underline{14}$ la (-) $\underline{5}$ 15,20 $\underline{7}$ -vincadifformine $\underline{2}$ ou (-) $\underline{7}$ -catharanthine $\underline{7}$, en tous points

1602 No. 17

identique à $\underline{2}_a$, à l'exception du signe du pouvoir rotatoire.

<u>2ème corrélation</u>: Comme il a déjà été indiqué², la pandoline <u>1</u> donne, par hydrolyse et décarboxylation, l'indolénine $\underline{5}_a$ qui fournit, par réduction avec LiAlH₄, l'indoline $\underline{6}_a$. Par déshydratation avec l'acide sulfurique³, $\underline{6}_a$ conduit essentiellement (rendement 35 %) à un dérivé éthylénique (α)_D + 48° auquel la structure $\underline{7}_a$ est attribuée notamment sur la base de l'examen du spectre de RMN du proton : triplet dissymétrique du méthyle de la chaîne éthyle centré sur 1,03 ppm, proton oléfinique porté par le C₁₅ : multiplet mal résolu centré sur 5,45 ppm.

Parallèlement, par hydrolyse alcaline suivie de décarboxylation en milieu acide, la (-) Δ 15,20 Ψ -vincadifformine $\underline{2}_b$ donne l'indolénine $\underline{5}_b$ qui fournit, par réduction avec LiAlH₄, la (-) Δ 15,20 Ψ -aspidospermidine $\underline{7}_b^{10}$, (α)₀ - 50°, identique en tous points, à l'exception du sens du pouvoir rotatoire, au dérivé $\underline{7}_a$ issu de la pandoline.

L'excellente concordance des valeurs absolues des pouvoirs rotatoires des deux couples de dérivés $\underline{2}_a$ - $\underline{2}_b$ et $\underline{7}_a$ - $\underline{7}_b$ permet d'affirmer que, dans les conditions opératoires utilisées , la cyclisation acido-catalysée de l'immonium 10 ou d'un intermédiaire analogue, s'effectue de façon parfaitement stéréospécifique. Etant donné que la configuration absolue de la (+) catharanthine $\underline{8}$ est fixée $\underline{11,12}$ il en résulte que la (+) pandoline répond bien à la structure $\underline{1}$ dans laquelle subsiste, comme seule indétermination, la configuration relative du \underline{C}_{20} .

La pandoline constitue le premier exemple d'un nouveau sous-groupe d'alcalo \overline{i} des du type $iboga^{13}$. L'étude expérimentale de son rôle éventuel dans la biogénèse des alcalo \overline{i} des de ce groupe mériterait d'être entreprise.

Ce travail est présenté en hommage au Professeur Maurice-Marie JANOT à l'occasion de son jubilé.

REFERENCES BIBLIOGRAPHIQUES ET NOTES

- 1 . J. LE MEN, G. LUKACS, L. LE MEN-DLIVIER, J. LEVY et M.-J. HOIZEY, Tetrahedron Letters, 1973...
- 2 . M.-J. HOIZEY, M.-M. DEBRAY, L. LE MEN-OLIVIER et J. LE MEN, Phytochemistry, 1973...
- 3 . J.-P. KUTNEY et F. BYLSMA, J. Amer. Chem. Soc., 1970, 92, 6090.
- Numérotation biogénétique préconisée par J. LE MEN et W.I. TAYLOR, Experientia, 1965, 21,
 508.
- 5 . J.-P. KUTNEY, W.J. CRETNEY, J.R. HADFIELD, E.S. HALL et V.R. NELSON, J. Amer. Chem. Soc., 1970, 92 , 1704.
- 6 . J.-P. KUTNEY, R.T. BROWN, E. PIERS et J.H. HADFIELS, J. Amer. Chem. Soc., 1970, 92, 1708.
- 7 . M. GORMANN, N. NEUSS et N.J. CONE, J. Amer. Chem. Soc., 1965, 87, 93.
- 8 . R.T. BROWN, J.S. HILL, G.F. SMITH et K.S.J. STAPLEFORD, Tetrahedron, 1971, 27, 5317.
- 9 . La Δ 15,20 ψ -vincadifformine a antérieurement été préparée par M. GORMANN et coll. et par J.-P. KUTNEY et coll. 6 qui ne précisent pas $(\alpha)_U$ ainsi que par R.T. BROWN et coll. qui indiquent un $(\alpha)_D$ de -174° (EtOH) mais émettent l'hypothèse d'une racémisation en

cours de réaction.

- 10. Nomenclature : afin d'éviter la terminologie complexe, antérieurement utilisée par J.-P. KUTNEY ^{3,5,6}, nous introduisons, par analogie avec le nom ψ-vincadifformine, le terme de ψ-aspidospermidine (composé pentacyclique saturé) avec les conventions suivantes : par définition, lorsque le terme ψ-aspidospermidine est précédé du signe (+) les centres C₇, C₃, C₁₄ et C₂ ont les configurations décrites sur Z_a (et les configurations inverses si ce terme est précédé du signe (-)) ; la configuration indépendante du C₂₀ non impliquée dans le terme ψ-aspidospermidine doit être précisée séparément
- 11. J.-P. KUTNEY, J. TROTTER, T. TABATA, A. KERIGAN et N. CAMERMANN, Chem. and Ind. 1962, 648 et N. CAMERMANN et J. TROTTER, Acta Cryst. 1964, 17, 384.
- 12. K. BLAHA, Z. KOBLICOVA et J. TROJANEK, Tetrahedron Letters, 1972, 2763 et références citées.
- 13. Appartiennent aussi à ce sous-groupe : la (+) pandine , ainsi que la (+) épi-20 pandoline et l'un des diastéréoisomères en 20 de la (+) ψ -vincadifformine, récemment isolés du Pandaca caducifolia (Travaux en cours).
- 14. L'un de ceux-ci, isomère non oléfinique de la ψ -catharanthine, apparaît être un composé hexacyclique apparenté à la pandine².